Forum Replies Created

Viewing 9 posts - 1 through 9 (of 9 total)
  • Author
    Posts
  • in reply to: TRNG Use: Email integration, esp Outlook? #1825

    euler357
    Member

    I believe that someone could make an Outlook plug-in to do cryptography in Outlook that pulls random numbers from the TrueRNGpro.

    Unfortunately, we don’t currently know of any way to stream random numbers into the Windows OS to be distributed by the OS to applications. Linux does this very easily with rngd.

    Chris

    in reply to: TrueRNGPro: anything bad that would reduce capabilities? #1824

    euler357
    Member

    It should work 24/7 for years under normal operating conditions (same as your computer). If there is any manufacturing or premature failure issue, contact us and we’ll make it right.

    Chris

    in reply to: TRNG Use: seeding PRNG recommendations? #1823

    euler357
    Member

    Take a look at the rngd (rng-tools).

    Here is a tutorial

    in reply to: Unreachable random numbers? #1822

    euler357
    Member

    Glad it’s working for you.

    Chris

    in reply to: Unreachable random numbers? #1772

    euler357
    Member

    Here is another run:

    root@raspberrypi:/home/pi/workspace/TrueRNG_Windows_Python# ent -c test.bin
    Value Char Occurrences Fraction
      0             3853   0.003763
      1             4002   0.003908
      2             4085   0.003989
      3             4008   0.003914
      4             4010   0.003916
      5             3903   0.003812
      6             4044   0.003949
      7             3982   0.003889
      8             4003   0.003909
      9             3987   0.003894
     10             3970   0.003877
     11             3954   0.003861
     12             3988   0.003895
     13             3982   0.003889
     14             4114   0.004018
     15             3962   0.003869
     16             4079   0.003983
     17             4028   0.003934
     18             3982   0.003889
     19             4047   0.003952
     20             3946   0.003854
     21             4023   0.003929
     22             4010   0.003916
     23             3990   0.003896
     24             3996   0.003902
     25             4033   0.003938
     26             4016   0.003922
     27             3920   0.003828
     28             3956   0.003863
     29             3915   0.003823
     30             4011   0.003917
     31             3926   0.003834
     32             3976   0.003883
     33   !         4061   0.003966
     34   "         4044   0.003949
     35   #         4060   0.003965
     36   $         4075   0.003979
     37   %         4059   0.003964
     38   &         3949   0.003856
     39   '         3960   0.003867
     40   (         3958   0.003865
     41   )         3900   0.003809
     42   *         3947   0.003854
     43   +         3993   0.003899
     44   ,         3975   0.003882
     45   -         4037   0.003942
     46   .         3936   0.003844
     47   /         3980   0.003887
     48   0         3855   0.003765
     49   1         4032   0.003938
     50   2         3999   0.003905
     51   3         3919   0.003827
     52   4         4094   0.003998
     53   5         3900   0.003809
     54   6         3943   0.003851
     55   7         4033   0.003938
     56   8         3990   0.003896
     57   9         3960   0.003867
     58   :         4021   0.003927
     59   ;         3992   0.003898
     60   <         3954   0.003861
     61   =         3875   0.003784
     62   >         4014   0.003920
     63   ?         4075   0.003979
     64   @         4008   0.003914
     65   A         4091   0.003995
     66   B         4049   0.003954
     67   C         3990   0.003896
     68   D         4014   0.003920
     69   E         3976   0.003883
     70   F         3865   0.003774
     71   G         4077   0.003981
     72   H         3958   0.003865
     73   I         4034   0.003939
     74   J         3980   0.003887
     75   K         3991   0.003897
     76   L         3933   0.003841
     77   M         3927   0.003835
     78   N         3929   0.003837
     79   O         3967   0.003874
     80   P         4101   0.004005
     81   Q         3943   0.003851
     82   R         4058   0.003963
     83   S         4005   0.003911
     84   T         3951   0.003858
     85   U         4060   0.003965
     86   V         3944   0.003852
     87   W         3975   0.003882
     88   X         3912   0.003820
     89   Y         3999   0.003905
     90   Z         3910   0.003818
     91   [         4008   0.003914
     92   \         4008   0.003914
     93   ]         3952   0.003859
     94   ^         3972   0.003879
     95   _         3933   0.003841
     96   X         4026   0.003932
     97   a         4015   0.003921
     98   b         3846   0.003756
     99   c         3953   0.003860
    100   d         3971   0.003878
    101   e         3992   0.003898
    102   f         4095   0.003999
    103   g         4013   0.003919
    104   h         3906   0.003814
    105   i         3889   0.003798
    106   j         3885   0.003794
    107   k         4029   0.003935
    108   l         4021   0.003927
    109   m         3961   0.003868
    110   n         3982   0.003889
    111   o         3938   0.003846
    112   p         4048   0.003953
    113   q         3966   0.003873
    114   r         4012   0.003918
    115   s         4042   0.003947
    116   t         4092   0.003996
    117   u         3873   0.003782
    118   v         4071   0.003976
    119   w         4099   0.004003
    120   x         3936   0.003844
    121   y         4119   0.004022
    122   z         4082   0.003986
    123   {         4025   0.003931
    124   |         3993   0.003899
    125   }         4148   0.004051
    126   ~         4063   0.003968
    127             3908   0.003816
    128             3969   0.003876
    129             4080   0.003984
    130             4058   0.003963
    131             4066   0.003971
    132             3954   0.003861
    133             3958   0.003865
    134             4051   0.003956
    135             4033   0.003938
    136             3983   0.003890
    137             4082   0.003986
    138             4029   0.003935
    139             3928   0.003836
    140             3904   0.003812
    141             4073   0.003978
    142             3919   0.003827
    143             3959   0.003866
    144             4014   0.003920
    145             3980   0.003887
    146             3958   0.003865
    147             4026   0.003932
    148             4006   0.003912
    149             4031   0.003937
    150             3979   0.003886
    151             4031   0.003937
    152             4032   0.003938
    153             3985   0.003892
    154             3990   0.003896
    155             4096   0.004000
    156             4021   0.003927
    157             3929   0.003837
    158             3984   0.003891
    159             4058   0.003963
    160             4084   0.003988
    161   ▒         4012   0.003918
    162   ▒         3910   0.003818
    163   ▒         3977   0.003884
    164   ▒         4022   0.003928
    165   ▒         4114   0.004018
    166   ▒         4019   0.003925
    167   ▒         4112   0.004016
    168   ▒         3993   0.003899
    169   ▒         3939   0.003847
    170   ▒         4009   0.003915
    171   ▒         3952   0.003859
    172   ▒         4102   0.004006
    173   ▒         3963   0.003870
    174   ▒         3982   0.003889
    175   ▒         3949   0.003856
    176   ▒         4031   0.003937
    177   ▒         4015   0.003921
    178   ▒         3999   0.003905
    179   ▒         4110   0.004014
    180   ▒         3941   0.003849
    181   ▒         4040   0.003945
    182   ▒         4153   0.004056
    183   ▒         4072   0.003977
    184   ▒         4015   0.003921
    185   ▒         4048   0.003953
    186   ▒         4093   0.003997
    187   ▒         3981   0.003888
    188   ▒         3963   0.003870
    189   ▒         4060   0.003965
    190   ▒         4006   0.003912
    191   ▒         3966   0.003873
    192   ▒         4016   0.003922
    193   ▒         3987   0.003894
    194   ▒         4059   0.003964
    195   ▒         4018   0.003924
    196   ▒         4133   0.004036
    197   ▒         4004   0.003910
    198   ▒         4043   0.003948
    199   ▒         4002   0.003908
    200   ▒         4041   0.003946
    201   ▒         3996   0.003902
    202   ▒         3942   0.003850
    203   ▒         3993   0.003899
    204   ▒         4096   0.004000
    205   ▒         3944   0.003852
    206   ▒         4131   0.004034
    207   ▒         3975   0.003882
    208   ▒         4044   0.003949
    209   ▒         3981   0.003888
    210   ▒         3951   0.003858
    211   ▒         3958   0.003865
    212   ▒         3964   0.003871
    213   ▒         4019   0.003925
    214   ▒         4091   0.003995
    215   ▒         3897   0.003806
    216   ▒         4054   0.003959
    217   ▒         4111   0.004015
    218   ▒         4090   0.003994
    219   ▒         4042   0.003947
    220   ▒         3886   0.003795
    221   ▒         4027   0.003933
    222   ▒         4081   0.003985
    223   ▒         3912   0.003820
    224   ▒         4128   0.004031
    225   ▒         3880   0.003789
    226   ▒         3981   0.003888
    227   ▒         3989   0.003896
    228   ▒         3956   0.003863
    229   ▒         4025   0.003931
    230   ▒         4002   0.003908
    231   ▒         3902   0.003811
    232   ▒         3990   0.003896
    233   ▒         4091   0.003995
    234   ▒         3970   0.003877
    235   ▒         4021   0.003927
    236   ▒         3903   0.003812
    237   ▒         3916   0.003824
    238   ▒         3972   0.003879
    239   ▒         4131   0.004034
    240   ▒         4135   0.004038
    241   ▒         3972   0.003879
    242   ▒         4051   0.003956
    243   ▒         3952   0.003859
    244   ▒         3979   0.003886
    245   ▒         4000   0.003906
    246   ▒         4039   0.003944
    247   ▒         3984   0.003891
    248   ▒         3908   0.003816
    249   ▒         4054   0.003959
    250   ▒         3945   0.003853
    251   ▒         3913   0.003821
    252   ▒         4067   0.003972
    253   ▒         3992   0.003898
    254   ▒         4011   0.003917
    255   ▒         4045   0.003950
    
    Total:       1024000   1.000000
    
    Entropy = 7.999824 bits per byte.
    
    Optimum compression would reduce the size
    of this 1024000 byte file by 0 percent.
    
    Chi square distribution for 1024000 samples is 249.37, and randomly
    would exceed this value 50.00 percent of the times.
    
    Arithmetic mean value of data bytes is 127.6448 (127.5 = random).
    Monte Carlo value for Pi is 3.134355994 (error 0.23 percent).
    Serial correlation coefficient is -0.000823 (totally uncorrelated = 0.0).
    • This reply was modified 7 years, 6 months ago by  euler357.
    in reply to: Unreachable random numbers? #1771

    euler357
    Member

    Yes, the outputs that you get from a TrueRNG/TrueRNGpro running in normal mode are equally probable.

    We use the avalanche effect in a semiconductor junction in two generators which are captured by 10 bit ADCs. The ADC bias is dealt with using an algorithm that maximizes the entropy and “spreads” the bias across the entire sample.

    Each 10 bit ADC sample from each generator has about 6.5 – 7 bits of Shannon entropy. These are combined using an entropy mixing algorithm (multiplication in a galois field — similar to a CRC) to concentrate the entropy. This takes in eight 10-bit samples and outputs four 8 bit bytes. So we are taking in 52 to 56 bits of entropy and mixing them to saturate the entropy across all 32 output bits (i.e. maximizing entropy). This is then XOR’d with a whitening sequence.

    So, yes, the probability of getting each byte is equal. The reality of a capture will show some variation among the bytes actually captured. Similarly, each 32 bit word will be equally likely. In a pseudo random generator, the algorithm usually guarantees that each symbol will appear an equal number of times in a finite sequence. The issue is that if a generator has a period of 256 bytes (small number for the sake of this argument) and you have 255 bytes output, then you know exactly what the next byte will be. It may be harder to guess if you have a longer period but the problem is the same.

    Here is the frequency count output of the ent tool ran on a 1MB capture from a TrueRNGpro (running under Linux on a Raspberry PI 3). The actual counts of each byte vary between runs with no discernible pattern. You can see below that the occurance of each byte is about 4000 counts (1024000 / 256).

    root@raspberrypi:/home/pi/workspace/TrueRNG_Windows_Python# ent -c test.bin
    Value Char Occurrences Fraction
      0             4113   0.004017
      1             3918   0.003826
      2             3993   0.003899
      3             4072   0.003977
      4             4071   0.003976
      5             3983   0.003890
      6             3870   0.003779
      7             4044   0.003949
      8             4129   0.004032
      9             4022   0.003928
     10             4021   0.003927
     11             3928   0.003836
     12             4006   0.003912
     13             3912   0.003820
     14             3954   0.003861
     15             4035   0.003940
     16             4073   0.003978
     17             3925   0.003833
     18             3972   0.003879
     19             4058   0.003963
     20             3942   0.003850
     21             3945   0.003853
     22             4015   0.003921
     23             4038   0.003943
     24             3887   0.003796
     25             3893   0.003802
     26             4090   0.003994
     27             4048   0.003953
     28             3978   0.003885
     29             3931   0.003839
     30             4011   0.003917
     31             3965   0.003872
     32             4002   0.003908
     33   !         4045   0.003950
     34   "         4002   0.003908
     35   #         4084   0.003988
     36   $         3904   0.003812
     37   %         4023   0.003929
     38   &         4034   0.003939
     39   '         3877   0.003786
     40   (         3913   0.003821
     41   )         3909   0.003817
     42   *         4041   0.003946
     43   +         3967   0.003874
     44   ,         4036   0.003941
     45   -         3967   0.003874
     46   .         4022   0.003928
     47   /         4031   0.003937
     48   0         3994   0.003900
     49   1         4042   0.003947
     50   2         3980   0.003887
     51   3         3960   0.003867
     52   4         4092   0.003996
     53   5         3861   0.003771
     54   6         3939   0.003847
     55   7         3949   0.003856
     56   8         4021   0.003927
     57   9         4035   0.003940
     58   :         4040   0.003945
     59   ;         4123   0.004026
     60   <         3997   0.003903
     61   =         3977   0.003884
     62   >         4053   0.003958
     63   ?         3957   0.003864
     64   @         4103   0.004007
     65   A         3928   0.003836
     66   B         4016   0.003922
     67   C         4051   0.003956
     68   D         3935   0.003843
     69   E         3950   0.003857
     70   F         4024   0.003930
     71   G         3997   0.003903
     72   H         4058   0.003963
     73   I         3948   0.003855
     74   J         3928   0.003836
     75   K         4133   0.004036
     76   L         4053   0.003958
     77   M         3976   0.003883
     78   N         4070   0.003975
     79   O         4068   0.003973
     80   P         4037   0.003942
     81   Q         3994   0.003900
     82   R         4010   0.003916
     83   S         3981   0.003888
     84   T         4114   0.004018
     85   U         3960   0.003867
     86   V         3940   0.003848
     87   W         4020   0.003926
     88   X         4056   0.003961
     89   Y         3937   0.003845
     90   Z         3946   0.003854
     91   [         4105   0.004009
     92   \         4050   0.003955
     93   ]         4044   0.003949
     94   ^         4076   0.003980
     95   _         3870   0.003779
     96   X         3955   0.003862
     97   a         3982   0.003889
     98   b         3935   0.003843
     99   c         3912   0.003820
    100   d         3962   0.003869
    101   e         4069   0.003974
    102   f         3989   0.003896
    103   g         3963   0.003870
    104   h         3904   0.003812
    105   i         4014   0.003920
    106   j         3970   0.003877
    107   k         4054   0.003959
    108   l         4016   0.003922
    109   m         3977   0.003884
    110   n         3986   0.003893
    111   o         4012   0.003918
    112   p         3926   0.003834
    113   q         4030   0.003936
    114   r         4019   0.003925
    115   s         4011   0.003917
    116   t         3890   0.003799
    117   u         4036   0.003941
    118   v         3897   0.003806
    119   w         3955   0.003862
    120   x         4006   0.003912
    121   y         3988   0.003895
    122   z         3907   0.003815
    123   {         4042   0.003947
    124   |         4032   0.003938
    125   }         4044   0.003949
    126   ~         3921   0.003829
    127             4000   0.003906
    128             4032   0.003938
    129             4059   0.003964
    130             4109   0.004013
    131             3932   0.003840
    132             3992   0.003898
    133             3981   0.003888
    134             4022   0.003928
    135             4028   0.003934
    136             4066   0.003971
    137             3983   0.003890
    138             3941   0.003849
    139             3957   0.003864
    140             3886   0.003795
    141             4041   0.003946
    142             3957   0.003864
    143             3986   0.003893
    144             3898   0.003807
    145             4110   0.004014
    146             3935   0.003843
    147             4010   0.003916
    148             4094   0.003998
    149             3938   0.003846
    150             3952   0.003859
    151             3970   0.003877
    152             3974   0.003881
    153             4013   0.003919
    154             3971   0.003878
    155             4021   0.003927
    156             4064   0.003969
    157             4061   0.003966
    158             4138   0.004041
    159             4004   0.003910
    160             4145   0.004048
    161   ▒         4006   0.003912
    162   ▒         4087   0.003991
    163   ▒         3890   0.003799
    164   ▒         3992   0.003898
    165   ▒         3941   0.003849
    166   ▒         4137   0.004040
    167   ▒         4017   0.003923
    168   ▒         4011   0.003917
    169   ▒         3993   0.003899
    170   ▒         3881   0.003790
    171   ▒         4037   0.003942
    172   ▒         3988   0.003895
    173   ▒         4020   0.003926
    174   ▒         4130   0.004033
    175   ▒         4059   0.003964
    176   ▒         3991   0.003897
    177   ▒         3947   0.003854
    178   ▒         3965   0.003872
    179   ▒         4053   0.003958
    180   ▒         3962   0.003869
    181   ▒         4027   0.003933
    182   ▒         3902   0.003811
    183   ▒         3871   0.003780
    184   ▒         4088   0.003992
    185   ▒         4071   0.003976
    186   ▒         4070   0.003975
    187   ▒         4021   0.003927
    188   ▒         3923   0.003831
    189   ▒         3967   0.003874
    190   ▒         3991   0.003897
    191   ▒         3905   0.003813
    192   ▒         4125   0.004028
    193   ▒         3934   0.003842
    194   ▒         4063   0.003968
    195   ▒         3880   0.003789
    196   ▒         4064   0.003969
    197   ▒         4037   0.003942
    198   ▒         4028   0.003934
    199   ▒         4057   0.003962
    200   ▒         4024   0.003930
    201   ▒         3988   0.003895
    202   ▒         3943   0.003851
    203   ▒         3950   0.003857
    204   ▒         3924   0.003832
    205   ▒         4079   0.003983
    206   ▒         4062   0.003967
    207   ▒         3945   0.003853
    208   ▒         4047   0.003952
    209   ▒         3923   0.003831
    210   ▒         4008   0.003914
    211   ▒         3938   0.003846
    212   ▒         4095   0.003999
    213   ▒         3943   0.003851
    214   ▒         4089   0.003993
    215   ▒         3965   0.003872
    216   ▒         3876   0.003785
    217   ▒         4022   0.003928
    218   ▒         4100   0.004004
    219   ▒         4097   0.004001
    220   ▒         4036   0.003941
    221   ▒         3963   0.003870
    222   ▒         4082   0.003986
    223   ▒         4106   0.004010
    224   ▒         4019   0.003925
    225   ▒         4049   0.003954
    226   ▒         3945   0.003853
    227   ▒         4023   0.003929
    228   ▒         4002   0.003908
    229   ▒         4029   0.003935
    230   ▒         4042   0.003947
    231   ▒         4048   0.003953
    232   ▒         4004   0.003910
    233   ▒         3884   0.003793
    234   ▒         3947   0.003854
    235   ▒         3953   0.003860
    236   ▒         4111   0.004015
    237   ▒         4042   0.003947
    238   ▒         4033   0.003938
    239   ▒         4059   0.003964
    240   ▒         3976   0.003883
    241   ▒         3996   0.003902
    242   ▒         4120   0.004023
    243   ▒         4098   0.004002
    244   ▒         3983   0.003890
    245   ▒         3971   0.003878
    246   ▒         4027   0.003933
    247   ▒         3931   0.003839
    248   ▒         4020   0.003926
    249   ▒         4024   0.003930
    250   ▒         3939   0.003847
    251   ▒         3935   0.003843
    252   ▒         3965   0.003872
    253   ▒         3937   0.003845
    254   ▒         3938   0.003846
    255   ▒         3843   0.003753
    
    Total:       1024000   1.000000
    
    Entropy = 7.999812 bits per byte.
    
    Optimum compression would reduce the size
    of this 1024000 byte file by 0 percent.
    
    Chi square distribution for 1024000 samples is 266.78, and randomly
    would exceed this value 50.00 percent of the times.
    
    Arithmetic mean value of data bytes is 127.5356 (127.5 = random).
    Monte Carlo value for Pi is 3.141973211 (error 0.01 percent).
    Serial correlation coefficient is 0.000399 (totally uncorrelated = 0.0).
    • This reply was modified 7 years, 6 months ago by  euler357.
    • This reply was modified 7 years, 6 months ago by  euler357.
    in reply to: rngd: failed fips test #1286

    euler357
    Member

    Jorge,

    Your ent output and speed looks good – no issues that I see.

    Glad that you got it working – let me know how your 5G test goes.

    BTW. The command line for running dieharder on the file is:

    dieharder -a -g 201 -k 2 -s 1 -f input_file > dieharder.results.txt

    Chris

    https://cockrum.net

    in reply to: rngd: failed fips test #1282

    euler357
    Member

    I’m running Ubuntu 13.10 and rngd 4. I tried to reproduce your issue but can’t.

    Here is a video of what happens when I try what you posted: http://youtu.be/nSD3MD2JTvE

    Notice that when I run rngtest with the same block size as rngd, I get 0 failures. This is because rngd does the FIPS test and discards those blocks that are “failures”. This is the expected behavior.

    Also, notice that my speed went down to 16k or so when using your rngd options. When I run it from init.d or directly without your options (i.e rngd -r /dev/TrueRNG -o /dev/random), I get the full speed back.

    As for the -t 1 (timeout) option, I’m not 100% sure what this does and why you need it. It seems to coincide with the timing of your error message though (timeout = 1 sec, your error = 1 second intervals).

    Chris

    in reply to: rngd: failed fips test #1281

    euler357
    Member

    For a hardware random number generator, some percentage of FIPS failures is normal. If you weren’t getting any failures, that would be a problem. The reason is that in a random sequence, the patterns that rngtest is looking for happen randomly (see page 5 of the TrueRNG manual http://ubld.it/wp-content/uploads/2014/02/TrueRNG_Manual_rev2.pdf). There are also several papers published on testing hardware random number generators (for example: http://www.fdk.com/cyber-e/pdf/HM-RAE103.pdf) . It is only a problem if the failures are consistently high (over maybe 1% of the total). Here is a longer test showing what should happen:

    rngtest 4
    Copyright (c) 2004 by Henrique de Moraes Holschuh
    This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

    rngtest: starting FIPS tests…
    rngtest: entropy source drained
    rngtest: bits received from input: 29500399616
    rngtest: FIPS 140-2 successes: 1473873
    rngtest: FIPS 140-2 failures: 1146
    rngtest: FIPS 140-2(2001-10-10) Monobit: 133
    rngtest: FIPS 140-2(2001-10-10) Poker: 144
    rngtest: FIPS 140-2(2001-10-10) Runs: 441
    rngtest: FIPS 140-2(2001-10-10) Long run: 434
    rngtest: FIPS 140-2(2001-10-10) Continuous run: 1
    rngtest: input channel speed: (min=1818181818.182; avg=28514767076.017; max=0.000)bits/s
    rngtest: FIPS tests speed: (min=37.472; avg=85.994; max=90.396)Mibits/s
    rngtest: Program run time: 328350153 microseconds

    Using the ent tool:
    ent FILENAME
    Entropy = 7.999984 bits per byte.

    Optimum compression would reduce the size
    of this 10485760 byte file by 0 percent.

    Chi square distribution for 10485760 samples is 232.74, and randomly
    would exceed this value 75.00 percent of the times.

    Arithmetic mean value of data bytes is 127.4826 (127.5 = random).
    Monte Carlo value for Pi is 3.143464334 (error 0.06 percent).
    Serial correlation coefficient is -0.000603 (totally uncorrelated = 0.0).

    Your rngtest results looks fine. Just to be sure, can you please stop rngd and run ent (ent FILENAME) on a 10MB file captured from the TrueRNG directly to see if the TrueRNG is ok?

    (Assuming that you used our udev script or have manually disabled modemmanager — it sends junk out over the port to try to auto-detect a modem so you need to have this uninstalled or disabled)
    Commands are:
    dd if=/dev/TrueRNG of=FILENAME bs=1k count=10k iflag=fullblock
    ent FILENAME

    dd will take 3-4 minutes to run.

    Chris

Viewing 9 posts - 1 through 9 (of 9 total)